lambda >= lambda d
in the definition of negligible and non-negligible,
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhR1KYZpkBEe-ipfoMf8hVoKWbNedCiMS9mP-fl2eimarBA0YGIgqMp1ChmXImApGdEU6cIwZBMb1V87SuTW25s3jwl-KA1NOzaFrt_eo2OgKEgz0oXT26hAy6H6m_xp9qn5sd4LUComd4/s320/2CE70711-F654-4D74-A389-2EF7EF9C9F1B.png)
by using the below formula,
g(x) = 2^x - x^d >= 0
to draw the below picture,
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgmI3V3-xN6Sv0b1hC35WXEkJfvCjg8KBzWdcenpgYpUoONV4TCq0666HXO43jicJiajlklZDyBML26CYh2cbo7duH_Rt-vzw5zinGRwJmHZkzImdc0d228x873f3a5fHamg6UUvQ98ohs/s320/IMG_2624.png)
Actually, we can using another formula to draw a more beautiful picture. We derive the formula as below:
We except that:
f(x) = 1/(2^x) <= 1/(x^d)
We define that:
g(x) = (x^d) / (2^x) <= 1
And draw the below picture for d = 2, 3, 4.
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjWxVLMFLQvtJ7tUqEDKWfQVxPCN1vFSaM_hjgxIzzz65Kc21-jf78vrOU1oJzfmpypQ1vAR4WYwUkySrLrvGe63VALSeMSCorqXj6VFCdWRb5H2Vd-8e7skr7gbbtiS-twWC7yF-MPTLg/s320/IMG_2634_2.jpg)
Please look at the red lines:
For d = 2, g(x) <= 1, if x >= 4
For d = 3, g(x) <= 1, if x >= 9.94...
For d = 4, g(x) <= 1, if x >= 16
The values, 4, 9.94..., and 16 are of "lambda d".
-Count
No comments:
Post a Comment