![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjNhwJorhkBg5Sm-hFF-ij7dDKrwuqph_zfoGQtc1ljbmL0WrGWyoKXPj_rNEVZoWP0cmNsjDdC6JWiiOyIfJOsdGWOEAHpzPgpqF2c1D3y9TRCeDvTu_J0Q4VJj1msc8ydQfljm2EVsnE/s320/B20BD2DA-2759-4B25-88AD-B80ED01F6E2F+%25281%2529.png)
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgzelwZBh72Tomnr13Iyy9G4JEFObcjl4mDvaCS2HZjC1PiZRU4LWqYrishnazZ7B0GiQZ7wbuf2HXrd7fBOF15D8Ec4fjkZXnanXYta8HHLEYux_N0fQNmVGfHJh1QZwcXE9e0TuwMJVA/s320/5E49B992-6739-4673-8C26-03C62C604B44.png)
Below is the definition of predictable PRG.
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg2zVo3eNpLC_DXfgo9g0e8AxRhKkWAxMNC_7EMW0eZkOeMxTCLIx9-nAJhGzm-ednBgGqCP5z_ixIL3VwYBPAtTf4OiW_6FrFrBhcX_fTspUqSKM1Dj8qbCVXQlXQnN9cB0YMkg0P8xw4/s400/BED8CB40-93C1-40D0-BA06-BFFEE1B19116.png)
How do we proof the below theorem?
PRG is secure => PRG is unpredictable
The previous page proofed it by:
PRG is predictable => PRG is not secure
This pare proofs it in a direct way. Before proofing it, I draw the below picture, where G is PRG, to understand the definition of secure PRG and unpredictable PRG.
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgL6twrEn6givq2z5YUz1y6981D_d4DQqnrPBNBaHTDxOywftMCo87RWPVwjidKF_kBSgHs-qkfeGjcOttQoLNVsRBkl3BzzFlzwvONpAwc3jtVMw-8PY63w9LYjBdTuRKGzM8kgv0wI-Y/s320/FullSizeRender.jpeg)
We keep the picture in our mind and use simple formulas to proof it.
The fact is that G is secure:
Adv = |Pr [A (G) = 1] - Pr [A (r) = 1]| <= e (e is epsilon)
Because the statement, that is proofed by the page, is also true.
Pr [A (r) = 1] = 1/2
Therefore
Pr [A (G) = 1] <= 1/2 + e
We can transfer the statement from A to B for the definition of A that is a statistical test.
Pr [B (G|1...i+1) = G|i+1] <= 1/2 + e
Therefore G is unpredictable.
-Count
No comments:
Post a Comment